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Overview

On March 23, 1835 the eminent mathematician Carl
Friedrich Gauss came to Albion College and gave a col-
loquium talk entitled �Quadratic functions: not just for
squares� [1]. In his talk he gave a detailed overview of
quadratic functions and explained some related mathe-
matical concepts. He then presented several interesting
applications. Gauss is pictured in Figure 1.

Figure 1: Johann Carl Friedrich Gauss
http://www-history.mcs.st-and.ac.uk/PictDisplay/Gauss.

html

Summary

A quadratic function f is a polynomial function of the
form

f(x) = ax2 + bx+ c, (1)

where x, a, b, and c are traditionally real numbers and
a 6= 0. Note that f is simply a polynomial of degree 2.
The name quadratic has been used since at least 1647
and comes from the Latin word quadraticus, meaning
square. When a = 0 and b 6= 0, then the corresponding
function is linear rather than quadratic. The form given
in equation 1 is called standard form. Other common
representation forms include vertex form,

f(x) = a(x− h)2 + k (2)

and factored form,

f(x) = a(x− r1)(x− r2). (3)

The form used often depends on a particular application
and converting from one form to another is very useful.
The graph of f is a parabola with the vertex at the point
(h, k).

Gauss showed us that the vertex form (equation 2) can
be obtained from standard form (equation 1) using the
technique of �completing the square.� In particular,

h = − b

2a
and k = −b2 − 4ac

2a
.

To �nd the factored form (equation 1), one substitutes
the above representations for h and k into the vertex
form (equation 2), resulting in

f(x) = a

(
x+

b

2a

)2

− b2 − 4ac

2a
. (4)

Setting equation 4 equal to zero and algebraically solving
for x results in

x =
−b±

√
b2 − 4ac

2a
. (5)

The two values for x are the values r1 and r2.

Gauss then explained that the values r1 and r2 are
called the roots of the polynomial. If they are both real,
then they represent to points on the graph of f(x) where
the function crosses the x-axis. It may be possible that
r1 = r2, and in that case, the graph is tangent to the
x-axis. If the roots are not real, then they are complex
conjugate pairs, meaning r1r2 is real. Because f is a
polynomial, the chain rule can be used to �nd the �rst
and second derivatives, with f ′(x) = 2ax+b and f ′′(x) =
2a. Thus the sign of a tells us the orientation of the graph
at the vertex.

http://www-history.mcs.st-and.ac.uk/PictDisplay/Gauss.html
http://www-history.mcs.st-and.ac.uk/PictDisplay/Gauss.html


Gauss illustrated these concepts with the quadratic
function

f(x) = x2 − 2x− 8,

= (x− 1)2 − 9, h = 1, k = −9,
= (x+ 2)(x− 4), r1 = −2, r2 = 4.

f ′(x) = 2x− 2 and

f ′′(x) = 2.
Thus the function crosses the axis at the points -2 and

4, is concave up, and has a vertex at the point (1,−9) as
illustrated in Figure 2.
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f(x) = x2 − 2x− 8

Figure 2: Example quadratic function
The function f(x) = x2 − 4x − 8 has roots r1 = −2,
r2 = 4, and vertex (1,−9).

Question and answer

After the talk, I asked Gauss �Can a general polynomial
be expressed in factored form?� He responded about his
earlier work showing every polynomial of degree n can
be factored into exactly n linear expressions of the form
(aix − bi), where the ai and bi terms are possible com-
plex numbers. He also mentioned while general cubic
and quartic equations can be solved exactly, other math-
ematicians had recently shown that the general quintic
and higher order polynomials have no closed form solu-
tion. Finally, he said Newton had developed an iterative
method for numerically �nding roots of a polynomial us-
ing its derivative. Let x0 be an estimate of a root, then
form the sequence

xn+1 = xn −
f(xn)

f ′(xn)
.

Then xn will generally approach a root, say r1, under
certain conditions, so that

lim
n→∞

f(xn) = 0.

One can divide the original polynomial by x − r using
polynomial division, yielding

g1(x) =
f(x)

x− r1
.

In theory this process can be repeated until all n roots
are determined. However, numerical errors may limit the
practical application of this technique for polynomials of
large degree.

Bring a friend

I brought my friend Charles F. Stockwell1 to the talk.

Personal response

I really enjoyed the talk by Gauss. First, it was exciting
to have such an eminent mathematician visit Albion and
have the opportunity to meet him. I was surprised that
he was here all the way from his home in Germany. While
I had seen some of the material presented, much of it was
new. I am very interested in taking Abstract Algebra and
learning more about group theory and its relationship to
�nding polynomial roots.
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69 A quadratic function $f$ is a polynomial function of the form

70 \begin{equation}f(x) = a x^2 + b x + c,

71 \label{eq:quadS}

72 \end{equation}

73 where $x, a, b, \text{and } c$ are traditionally real numbers and $a\ne0$.

74 Note that $f$ is simply a polynomial of degree 2.

75 The name quadratic has been used since at least 1647 and comes from the Latin word \emph{quadraticus},

meaning square.

76 When $a=0$ and $b\ne 0$, then the corresponding function is linear rather than quadratic.
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78 vertex form,

79 \begin{equation}f(x) = a (x-h)^2 + k
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82 and factored form,

83 \begin{equation}f(x) = a(x-r_1)(x-r_2).
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86 The form used often depends on a particular application and converting from one form to another is very
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87 The graph of $f$ is a parabola with the vertex at the point $(h,k)$.
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91 Gauss showed us that the vertex form (equation~\ref{eq:quadV}) can be obtained
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93 using the technique of ``completing the square.'' In particular,
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111 % Important Point 3 of 3
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113 Gauss then explained that the values $r_1$ and $r_2$ are called the roots of the polynomial.

114 If they are both real, then they represent to points on the graph of $f(x)$ where the function

115 crosses the $x$-axis. It may be possible that $r_1=r_2$, and in that case, the graph is tangent

116 to the $x$-axis.

117 If the roots are not real, then they are complex conjugate pairs, meaning $r_1r_2$ is real.

118 Because $f$ is a polynomial, the chain rule can be used to find the first and second derivatives, with

$f'(x) = 2ax + b$ and

119 $f''(x) = 2a$. Thus the sign of $a$ tells us the orientation of the graph at the vertex.
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121 Gauss illustrated these concepts with the quadratic function

122

123 \vspace*{-2\baselineskip}

124 \begin{align*}

125 f(x) &= x^2 - 2x - 8, \\

126 &= (x-1)^2 - 9,\qquad h=1, k=-9,\\

127 &= (x+2)(x-4),\qquad r_1=-2, r_2=4.\\

128 f'(x) &= 2x - 2\quad\text{and}\\

129 f''(x) &= 2.\\

130 \end{align*}
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133 Thus the function crosses the axis at the points -2 and 4, is concave up, and has a vertex at the point
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162 \label{fig:quadratic}

163 \end{figure}

164



165

166 \section*{Question and answer} % Optional 50-100 words

167
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